Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds.

نویسندگان

  • Archana Pandey
  • Abhishek Prasad
  • Jason P Moscatello
  • Mark Engelhard
  • Chongmin Wang
  • Yoke Khin Yap
چکیده

Novel PMMA-STO-CNT matrices were created by opened-tip vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coatings of strontium titanate (STO) and poly(methyl methacrylate) (PMMA). Emission threshold of 0.8 V/μm was demonstrated, about 5-fold lower than that of the as-grown VA-MWCNTs. This was obtained after considering the related band structures under the perspective of work functions and tunneling width as a function of the STO thickness. We showed that there is an optimum thickness of STO coatings to effectively reduce the work function of CNTs and yet minimize the tunneling width for electron emissions. Furthermore, simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs' repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolonged emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices, X-ray generation, and wave amplification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays

Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT)-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron...

متن کامل

Synthesis and Characterization of Anatase-coated Multiwall Carbon Nanotube for Improvement of Photocatalytic Activity

Sol-gel technique was used to coat multiwall carbon nanotubes (MWCNTs) with anatase titania to increasing the surface area and improve the photocatalytic activity of TiO2. Room temperature ballistic conduct of MWCNT combined with semiconducting behavior of anatase brought about a photocatalytic improvement of ~37 % with respect to the highest methyl orange decolorization flair. For characteriza...

متن کامل

Field Emission from Lateral Multiwalled Carbon Nanotube Yarn Emitters

A field emission from a lateral emitter made by a multiwalled carbon nanotube (MWCNT) yarn was investigated. The lateral emitter showed an excellent field emission performance with a low turn-on electric field of 1.13 V/μm at an emission current of 1 μA, high emission current of 0.2 mA at an applied voltage of 700 V, and longtime emission stability for over 20 h without any significant current ...

متن کامل

Charge transport effects in field emission from carbon nanotube-polymer composites

Electron field emission measurements have been made on multiwall arc discharge carbon nanotubes embedded in a conjugated polymer host. Electron emission at low nanotube content is observed and attributed to an enhancement of the applied electric field at the polymer/nanotube/vacuum interface where the electron supply through the film is attributed to fluctuation induced tunneling in a disordere...

متن کامل

On-chip electron-impact ion source using carbon nanotube field emitters

Articles you may be interested in Fabrication and characterization of single carbon nanotube emitters as point electron sources Appl. Source brightness and useful beam current of carbon nanotubes and other very small emitters Carbon nanotubes synthesized by biased thermal chemical vapor deposition as an electron source in an x-ray tube Appl. On-chip vacuum microtriode using carbon nanotube fiel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2013